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Stress is transferred to the fibres in a fibrous composite material through interactions at the fibre 
surface. A number of descriptions of different transfer processes have been developed but these 
give little information on the state of stress within the fibre itself. The analysis presented here 
enables the internal stresses and strains generated within the fibre by the different stress transfer 
mechanisms to be analysed. The results show clearly different stress patterns for the mechanisms 
studied; fibres in a plastic or metallic matrix compared with those in an elastic matrix. The 
definition of a 'critical length" in the latter case is not so clear as is sometimes suggested. 

1. In t roduc t ion  
Fibrous composite materials have recently gained 
great technological importance owing to their su- 
perior performance and versatility. Embedding stiff 
fibres in a softer matrix can lead to some outstanding 
mechanical properties, including the advantages of 
both fibre and matrix, such as high strength and large 
elongation to fracture. Biological systems have been 
using composites from before recorded history and 
they form the vast majority of supporting tissues in 
both the plant and animal kingdoms. Such materials 
have developed to fulfil many mechanical functions, 
ranging from those permitting only small displace- 
ments, e,g. wood or bone, to tissues which have de- 
veloped mechanisms for reorienting fibres and which 
can safely withstand strains of approaching 100% [1]. 

The mechanisms of stress-transfer from the matrix 
to the, generally stronger and stiffer, fibres are slowly 
being elucidated from both theoretical and experi- 
mental approaches [2-7]. These enable the calcu- 
lation of stress-transfer lengths, commonly known as 
critical lengths, and are obviously Of prime import- 
ance. While these studies generally make clear exactly 
the system that is being studied, popularized versions 
or summaries of results in books [8, 9] often seem to 
confuse the elastic analyses, such as those by Cox [2], 
with those derived for metals and polymers which rely 
on either a plastic or a frictional transfer of stress [3]. 
Although the mean axial stress within a fibre can be 
estimated, no method has yet been proposed to calcu- 
late the distribution of the various stresses and strains 
within the fibres themselves. Such analysis would not 
only calculate internal stresses and strains generated 
within the fibre but would also demonstrate clearly 
the different stress distributions to be expected from 
the various models for stress transfer. 

This paper attempts to address this problem by 
presenting an analytical method for calculating the 
stresses and strains within a fibre from a given stress 
distribution at the surface represented by a Fourier 
series. To simplify the analysis, the fibre is assumed to 
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be isotropic and homogeneous and only stresses over 
the curved, cylindrical surface are considered here. 
First the general equation to be solved is set up for 
stresses and displacements within the fibre. Then the 
general solution is derived for the case of stresses at 
the curved surface of the fibre before analysing a num- 
ber of examples of different shear stress distributions 
only. However, these restrictions can be lifted in future 
studies to include normal stresses both at the fibre 
ends and radially directed. The solutions obtained will 
be put into the context of different fibre-matrix com- 
binations in which these stresses could arise. 

2. M e t h o d  
The method adopted is to obtain symmetrical solu- 
tions to the equations of elasticity in cylindrical coord- 
inates [10]. A rigorous derivation has been performed 
previously [11] and the results derived here are based 
largely on that analysis. An outline of the derivation is 
given in Appendix A for completeness and accessibil- 
ity, but for a rigorous analysis, one is referred to 
Filon's original paper. A cylindrical polar coordinate 
system is used throughout the analysis. The fibre has 
a radius a and length 2c but because of symmetry only 
a half-fibre 0 ~< z ~< c needs to be considered. Its ma- 
terial properties are assumed to be isotropic and 
homogeneous and can therefore be represented by the 
Lam6 constants, )~ and g. Though X does not have the 
same clear physical interpretation as other material 
parameters, its use does simplify the writing of the 
equations and it will be seen that formulae can be 
derived that allow ready alteration of model para- 
meters such as Poisson's ratio. Let C~xy denote the 
stress parallel to dx across an element of surface per- 
pendicular to dy where x and y can stand for any of 
r, % z. Also, let u, v, w denote the radial, circumferen- 
tial and longitudinal displacements, respectively, in 
the fibre. Solutions are required to a fourth-order 
differential equation of the form 

V z v 2 f  = 0 (1) 

0022-2461 �9 1994 Chapman & Hall 



where V is Laplace's operator in cylindrical polar 
coordinates and f m a y  stand for either du/dz or dw/dr 
[11]. The required solutions for this system, which are 
in the form of a combination of trigonometric and 
Bessel's functions, are outlined in Appendix A. It may 
be seen that the solutions for radial and longitudinal 
displacements are independent of those for transverse 
displacements and that, similarly, the stresses Oez and 
o~ ,  which would generate torsion in the fibre, depend 
only on v and are thus independent of the other 
stresses. 

For  the purposes of this analysis, only stresses at the 
cylindrical surface of  the fibre will; be considered. In  
this case, the normal stress, o= ,  over the faces z = 4- c 
is identically zero. The radial stress is described by an 
even function o f z  over the surface r = a and is given 
by cy, = Ixf(z), and the shear stress is an odd function 
over the curved surface r = a and is given by 
%~ = gg(z). These attributes are often overlooked, but 
arise from symmetry considerations and, for the shear 
stress, the requirement for equilibrium; a fibre must be 
pulled equally but in opposite directions at any corres- 
ponding points either side of the central origin. Ap- 
plied stresses are normalized by the fibre shear 
modulus to make the results independent of the par- 
ticular fibre. No account is taken of the surrounding 
matrix other than that it can generate the stresses 
described by f(z) and g(z). 

The functions f(z) and g(z) can be expanded in the 
form of Fourier series between the limits z = + c in 
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where y = (X + IX)/X + 2IX) and p = kr. Noting that 
v = X/2(X - IX), then a simple derivation shows y to be 
given by 1/2(1 - v). In this way the effects of different 
Poisson ratios can be assessed. The constants A~, 
A 2 and C are found by substituting the Fourier coef- 
ficients calculated from Equations 2 and 3 into 

a,[czll(~) + 70~2Io(~)] 4- bn[yo~Zll(cz) + (1 - y)0qo(00] 
2[y~212(~) - (1 + y~2)i2(~)] (5) 

a,[0~II(=) + y~Zlo(~)] + b,[(1 + y)0do(00 - (2 + y~2)I1(=)] 
(6) 

21y~2I~(~) - (1 + y~2)I~(00] 

(2n + 1)n a ,~yl l (~)  + b,[y~Io(~)  - yli(=)] 
C = - 2c 2[y~212(~) - (1 + V~2)I2(00] (7) 

= ~ a, cos[(2n + 1)nz/2c] (2a) 
n = 0  

I f (z )  - f (c ) ]  cos [(2n + 1)nz/2c] dz 

and 

g(z) = ~ b. sin[(2n + 1)nz/2c] 
n=O 

b, = -l f +f 9(z)sin[(2n 1)nz/2cJdz 

Now, because (or,),=, = Ixf(z) and (o,~),=, = Ixg(z), 
these can be compared with the general equations 
whose derivation is outlined in Appendix A. The result 
is the following set of equations: 

o~, _ ~ _  [(1 + y)At  + (1 -- y)A2]Io(p) 
~t ( 

+ 2 ( ;  1 Co)  I I ( p ) } k  cos(kz) (4a) 

To enable the implementation of these equations on 
a computer, r and z are allowed to assume only dis- 
crete values and the stresses and displacements are 
therefore calculated on a mesh throughout the fibre. If 
the radius is divided into m divisions an d  the 
half-length into p divisions, then the values of r 
become r i =  ia/m ( i = 0 , 1  . . . .  m) and of z are 

(2b) zj = j c/p (j = O, 1 . . . ,  p). The ratio of the length to 
the diameter of the fibre, the axial ratio, is denoted by 
q(=  c/a). Iterations are therefore set up to step 

(3a) through all the values of i and j and calculate the 
displacements u and w and the stresses o,~, orz, 

(3b) o =  and c%, for given values of q and z where 
z = (cy,z)r=,. The Bessel's functions are calculated 
from their series expansions [121. The radial contrac- 
tion, u, and the longitudinal extension, w, are cal- 
culated as multiples of za/ix. Similarly the stresses are 
calculated as multiples of z alone and, therefore, scale 
directly as the magnitude of the stress transferred to 
the fibre from the matrix. 

3. Applications 
The systems considered will be those that have only an 
applied shear stress over the curved surface. So, 
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Figure 1 Schematic plots of stress-transfer functions considered in 
the analysis. 

~ r r = 0  at r = a  and ~ = = 0  at z =  + c ,  and it is 
readily seen that Uo = Wo = 0 and a, = 0. The coeffic- 
ients b, will be calculated from the Fourier series for 
each form of g(z) considered for cr,~. Three forms for 
this stress-transfer function will be considered and 
these are illustrated in Fig. 1. These are constant shear 
over the whole fibre length, constant shear over a frac- 
tion of the fibre near the ends and finally the shear- 
lag distribution [2] described by a hyperbolic sine 
function. 

3.1.  C o n s t a n t  shea r  s t ress 
The simplest case to treat first is one of constant stress 
transfer along the whole length of the fibre. This will 
serve to illustrate the sort of results to be expected 
from a metallic or plastically deforming matrix which 
applies a constant stress over the surface of the fibre. 

The stress transfer function, g(z), is given by 
g g ( z ) = ~  for 0~<z~<c  and g g ( z ) = - ~  for 
- c ~< z < 0 and the Fourier coefficients b, are given 

by 

b, = 4~/la(2n + 1)~ (8) 

Substitution of Equation 8 into Equation 4a - f  yields 
values for the constants A1, A2 and C as described in 
Equations 5-7. Three values of axial ratio were ana- 
lysed: q = 10, 100 and 1000 each with two values of 
Poisson ratio, v = 0.25 and 0.4. 

Fig. 2 shows the variation of axial stress, ~=,  along 
the fibre for fibres with large axial ratios. It shows 
a linear increase from the end of the fibre to the centre 
where it reaches a value of 2q~, independent of v. For  
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Figure 2 Variation of axial stress, ~=, along the length of a fibre for 
a constant shear stress transfer, z, as shown in Fig. la. The results 
are scaled by the axial ratio q to enable them to be superimposed. 
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Figure 3 Variation of lateral displacement, u, and axial displace- 
ment, w, along the length of the fibre for a constant shear stress 
transfer, x, as shown in Fig. la. These can be superimposed for all 
fibre lengths if scaled by q and q2, respectively, as described in the 
text. (O, Q) v = 0.25, (El, I )  v = 0.4. 

small q the distribution is very similar except that it 
overshoots at the midpoint of the fibre on the surface, 
by more than 15 %, and there is therefore a significant 
difference between the axial stress along the centre of 
the fibre and that at the outer surface. This is due, at 
least in part, to the artificial loading pattern, which 
has a discontinuity at the fibre midpoint, and to the 
slow convergence of some of the series at the bound- 
aries of the problem. 

The axial and radial displacements are shown in 
Fig. 3. The radial displacement, u, is calculated as 
a non-dimensional multiplier of a~/g and is shown 
normalized by the axial ratio as this allows all the 
results to be superimposed. As the radial strain is 
homogeneous it is defined by the displacement divided 
by the radius. So, to calculate the radial strain from 
the graph it is therefore necessary to multiply the 
result shown by q'c/g. It can be seen that the value for 



the Poisson's ratio makes a significant difference to 
both the radial and axial strains. The radial strain is 
compressive, decreases along the length of the fibre 
and increases with the Poisson's ratio. In contrast, the 
axial strain is not homogeneous, being given by the 
gradient of the displacement curve in Fig. 3. It is 
greatest at the midpoint of the fibre and decreases 
linearly to zero at the ends. The magnitude of this 
strain decreases with increasing Poisson's ratio. The 
calculated values for axial displacement, w, are again 
dimensionless multipliers of aug. To express this in 
terms of fibre length, rather than radius, multiply 
numerator and denominator of this expression by q to 
change w to a multiplier of c'c/gq. This scales with q in 
the same way as did the radial strain, and so the graph 
for w is shown normalized by q2. Only in fibres with 
a small axial ratio was there any significant variation 
in axial stress or strain across the radius of the fibre. At 
the surface both of these were about 14% higher than 
along the z-axis. (The surface stress wilt actually have 
a discontinuity at z = 0 due to the form of function 
chosen for g(z)). The effect of these strain gradients 
will be to distort the planarity of the fibre ends which 
may, in practice, affect fibre-end bonding. However, 
this will not be considered here. 

3.2. Constant  shear stress at f ibre ends 
If a constant shear stress is applied to the fibre surface 
over a fraction of the fibre at the ends then the more 
traditional description of fibre axial stress appears. 
This stress distribution could arise, as before, from 
plastic flow of the matrix over the fibre or by friction 
between the fibre surface and the matrix, but in this 
case be ineffective at the centre of the fibre due to the 
smaller relative movement of fibre and matrix. This 
distribution is somewhat contrived but is the only one 
that gives results that are similar to textbook illustra- 
tions. Fig. 4 shows that the axial stress rises linearly 
over the part of the fibre subject to the applied shear, 
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Figure 4 Variation of axial stress, cy==, along the length of a fibre for 
a constant  shear stress transfer, ~, over the terminal one-third of the 
fibre as shown in Fig. lb. The results are scaled by the axial ratio 
q to enable them to be superimposed. 
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Figure 5 Variation of lateral displacement, u, and axial displace- 
ment, w, along the length of the fibre for a constant  shear stress 
transfer, ~, over the terminal one-third of the fibre as shown in Fig. 
lb, These can be superimposed for all fibre lengths if scaled by q and 
q2, respectively, as described in the text. ( �9 0 )  v = 0.25, (El, 
II) v = 0.4. 

in this case the terminal one-third. Over the remainder 
of the fibre it remains constant with a value of 2qlf/z 
where If is the fraction of the fibre length over which 
the shear stress is applied. It is now the combination of 
the axial ratio and the fraction of the fibre over which 
stress is transferred that determine the fibre stress for 
a given applied shear stress. 

The strains in the fibre will be similarly altered from 
the continuous case described above. Fig. 5 shows the 
radial and axial displacements in a fibre in which 
stress is transferred over one-third of the fibre length. 
The axial ratio, q, again serves as a normalizing factor 
that enables the results for all fibre lengths to be 
superimposed. The compressive radial strain may be 
calculated by multiplying the displacement shown; 
u/q, by qz/p. as before. Similarly to the axial stress, the 
radial strain scales from that found for continuous 
stress transfer by the factor of the fractional length of 
the stress transfer region. So, in the case plotted in 
Fig. 5, the maximum displacement is one-third that 
found for the continuous transfer. The axial strain is 
constant over the central part of the fibre, again with 
a magnitude reduced by the factor If and decreases 
linearly to the fibre end where it is zero. It may also be 
calculated by similar methods to those outlined above. 

3.3. S h e a r - l a g  
The standard analysis for elastic stress transfer caused 
by the different strains generated in fibre and matrix 
due to their different moduli is due to Cox [2]. This is 
treated comprehensively in several books [3, 8, 9] 
though, once again, there are inconsistencies. The ana- 
lytical method involves first calculating the axial stress 
in the fibre then deriving the stress transfer function 
applied to the surface. The treatment here is slightly 
different to previous ones in that the origin is chosen 
to be at the mid-point of the fibre, as this simplifies the 
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mathematics, and the stress transfer function is as- 
sumed to be that derived from the shear-lag analysis. 
The stress and strains in the fibre are then calculated 
for all r and z. 

The standard analytical result for the axial stress is 
given by 

cosh(13 )) 
O'f = Ef~;f 1 cosh(13c)/ (9) 

where 

L i-Z(R/a) J (10) 

which may be written as [3 = ~'/a and 13' is now dimen- 
sionless. Nomenclature is as before and, in addition, 
Gm is the shear modulus of the matrix, Ef the fibre 
modulus, e the strain in the composite and 2R the 
mean spacing of the fibres normal to their length. The 
shear stress along the surface of the fibre is then given 
by 

[ - G ~  -]~/2 sinh(13z) (11) 
= Efe [2Ef ln(R/a)J  cosh(J3c) 

which may be written 

sinh(~z) 
= Zo cosh(~c) (12) 

If 9(z) = sinh(~z)/cosh(~c) then from Equation 3 the 
Fourier coefficients are given by 

( -  1)"213 ( -  1)"813' 
b,, - c(132 + k2 ) = (4q213,2 + k,2) (13) 

where k = (2n + 1)r~/2c = k'/2c. Inserting these into 
Equations 4-7 gives the required results. For the 
purposes of calculation, values were assigned to the 
ratio of matrix shear modulus to fib're modulus of 
4 x 10-3 and 10- ~ as these are the figures that corres- 
pond to sapphire fibres in a resin and a metal, respec- 

tively ([3], p. 262). The logarithmic packing function is 
slowly varying, for instance for R/a in the range 2-20 
the logarithm only increases from 1 to 3. A value of 
2 was chosen for ease of comparing figures but the 
dependency of the results on this parameter could also 
be investigated separately. This means that 
~' = (Gm/Ef) ~/2. It also needs to be noted that there is 
an implicit dependency on the aspect ratio, q, in the 
argument of the hyperbolic functions above; 13z may 
be written ~'qz/e and [3c becomes 13'q. 

Fig. 6 shows the shear stress, ~=, for various values 
of q13' along the half-fibre. For small values of q13' the 
increase in stress from zero at the centre towards the 
fibre ends is essentially linear, because sinh(x) ~ x and 
cosh(x) ~ 1 for small x. Increasing the value of G~ and 
therefore 13' has the same effect as increasing the aspect 
ratio of the fibre, and it can be seen that stress is 
transferred over smaller fractions of the fibre length 
concentrated at the ends. The consequence is that the 
fibre is fully stressed along a greater proportion of its 
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Figure 6 Variation of shear stress, ~,= along the outer surface of the 
fibre for the values of q~' shown, assuming a shear-lag form of stress 
transfer as shown in Fig. lc. As the axial ratio increases, stress is 
transferred over increasingly smaller fractions of the fibre at the 
fibre ends. q13:(O) 0.Ol, (V) 0.1, (Y) 1.0, ([]) 10.0. 
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length, as shown in Fig. 7. However, Fig. 7 also shows 
that in terms of the maximum axial stress in the fibre, 
the effects of increasing G m a r e  not the same as increas- 
ing the fibre length. By equating the axial force gener- 
ated in the fibre at a given position with the shear 
stress transferred up to that position (Appendix B) it 
may be shown that the peak axial stress at the centre 
of the fibre (l~zz/T,o)ma x = 2/13' providing the fibre is 
long enough for the sinh function for Cruz to have fallen 
to almost zero. If, once again, the logarithmic term is 
removed, then the peak stress becomes 2(El~Gin) 1/2 
and this may be seen in Fig. 7 for the two values of 
Gm/Ef ( 4 x  10 - 3  and 0.1) plotted. Almost paradoxi- 
cally, the peak axial fibre stress increases as the matrix 
shear modulus decreases for a given fibre modulus. As 
the fibre axial ratio increases the axial stress along the 
fibre first increases monotonically along the whole 
length of the fibre until the fibre is sufficiently long 
that the peak stress, described above, occurs. After this 
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Figure 9 Variation of lateral displacement, u, and axial,displace- 
ment, w, along the length of the fibre for a shear-lag form of stress 
transfer to the fibre, as shown in Fig. lc, with Gm/E f = 0.1. The 
effects of increasing the Poisson's ratio from (a) v = 0.25, to 
(b) v = 0.4 are shown. The lateral displacements converge as q in- 
creases, so these can be plotted on the same axes for all fibre lengths, 
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Figure 8 Variation of lateral displacement, u, and axial displace- 
ment, w, along the length of the fibre for a shear-lag form of stress 
transfer to the fibre, as shown in Fig. lc, with Gm/Ef = 4 x 10 3. The 
effects of increasing the Poisson's ratio from (a) v = 0.25, to 
(b) v = 0.4 are shown. The lateral displacements converge as q in- 
creases, so these can be plotted on the same axes for all fibre lengths, 
as can w if scaled by q as described in the text. q:(�9 10, (V) 20, 
(c?) 30, (zx) 5o~ (~>) ~oo, (e) looo. 

is reached the stress cannot increase further for a given 
applied stress but the plateau region of maximum 
stress extends further along the length of the fibre. 
This is seen most clearly for the weakly interacting 
system in Fig. 7a. It may be seen that the maximum 
fibre stress scales directly with the magnitude of the 
applied shear stress. However, increasing the applied 
shear stress does not change the length of the maxi- 
mally stressed plateau region. This result is confirmed 
by experimental measurements [5] which show no 
change, provided there is no debonding between fibre 
and matrix. This again contrasts with common 
portrayals, e.g. [8], which show the plateau region 
diminishing as the applied stress increases until the 
fibre breaking stress is reached. 

The displacements generated in the fibre by the 
above stresses are shown in Figs 8 and 9. The axial 
displacements are scaled by the axial ratio so that they 
can be plotted on the same axes but the radial ones 
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converge and do not require scaling. However, there is 
now a clear dependency of these parameters on the 
axial ratio not just in magnitude as before but also in 
the form of the distribution. These appear to follow 
the stress patterns shown in Figs 6 and 7 and are 
dependent on the Poisson's ratio of the fibre material. 
Only for fibres of very small values of q13' is there any 
significant difference in the stresses or the strains at 
the surface compared with those along the axis r = 0. 
This difference was about  4% for the axial stress and 
strain for fibres of q = 10 and Gin~El --- 4 x 10 -3.  

4. Critical length 
From these analyses there are a number  of ways of 
introducing a critical length, based on fibre failure, or 
a stress-transfer length relying on the requirement to 
transfer effectively as much stress as possible to the 
fibre. For  the first case considered, the analysis clearly 
demonstrates that if the stress transfer to the surface of 
the fibre is assumed to act along the whole length of 
the fibre and not just at the ends, no plateau is de- 
veloped in the axial stress; it rises constantly to its 
maximum value at the midpoint of the fibre. For  
a given value of ~, the critical axial ratio, qr which is 
such as to allow this stress to reach the breaking stress 
of the fibre, ~== = or*, is given by 

cy* = 2qc~ (14) 

This is easily rearranged to give the classical expres- 
sion for the so-called critical length, 1~ = acy~'/'c. How- 
ever, this does not correspond to a stress-transfer 
length, as stress is applied along the whole length of 
the fibre. The c o m m o n l y  shown diagram of stress 
rising over this critical length at the ends of the fibres 
and then remaining constant over the central region 
cannot be realized with this form of stress transfer. 

If the stress is only applied over a fraction of the 
fibre at the ends, then the above expression is modified 
so that the maximum fibre stress will reach the frac- 
ture Stress if 

cy* = 2qcIf'~ (15) 

In this case, the critical axial ratio for a given value of 
will increase as the stress-transfer fractional length 

decreases from the full length of the fibre considered 
above. In this case there is a plateau in the axial stress 
corresponding to the unloaded part  of the fibre. How- 
ever, the length of this plateau does not decrease as the 
magnitude of the shear stress increases, it remains 
a constant fraction of the fibre length. So, if the axial 
stress approaches the fracture strength of the fibre it 
will do so over the whole of this length and failure can 
therefore occur at any point. 

For  the case of a shear-lag stress transfer function 
defined by Equation 12, the maximum value of z oc- 
curs when z = c  and so ~=%tanh(13 'q) .  Now 
tanh(x) -~ 1 as x ~ oo and so, for instance, �9 rises to 
within 1% of its theoretical maximum when 
tanh(q13') = 0.99, i.e. q13' = 2.7. If this is used to define 
a critical stress transfer length, q~, then 

qc = 2.7/13' 

2.7(Ef /Gm)  1/2 (16) 

This definition now has nothing to do with fracture Of 
the fibre, but dictates what length of fibre is required 
for the shear stress to be able to rise to within some 
previously determined fraction of its theoretical max- 
imum at the fibre ends. If this value of 13'q is sub- 
stituted into Equation 8 and the value of the axial 
stress determined at the fibre centre, z = 0, then it is 
readily shown that the fibre stress is about  13% lower 
than the theoretical maximum. This is illustrated in 
Fig. 7a where if 13 ' 2 = G m / E f = 4 x l 0 - 3  then the 
critical stress-transfer length is qo = 2.7/13'= 43 and 
the predicted value of the axial stress at z = 0 is 
(0.87) x 2/13' -- 27. Interpolating the curves shown for 
various values of q shows that this is indeed the case. 
However, it is clear from the same figure (Fig. 7a) that 
the axial stress does not appear to reach its maximum 
until q ,-~ 100. Another definition of q could, therefore, 
be derived from Equation 8 as the axial ratio for which 
the axial stress reaches within 1% of its theoretical 
maximum. Appendix B derives an expression for the 
maximum axial stress, and from Equation A10, by 
requiring that sech(13'q)= 0.01 leads to the value 
qc = 5.3/13'= 83. Once again this has no immediate 
connection with fibre failure but is derived from a con- 
sideration of maximum utilization of the fibre proper- 
ties. However, to find the smallest value of q for which 
the maximum axial stress can reach the breaking 
stress then again from Equation A10 cry' = 2~o/13'. 
Substituting for 13' from the above expression for 
qc leads to qo = 5.3cr*/2~o. All the above analyses 
have thus shown that a critical stress-transfer length 
can be defined as some multiple of 1/13', qo = Qm/13', 
and so qr = Qm(O-*/2Io). This is very similar to the 
commonly accepted definition as derived for the con- 
stant stress-transfer case with exception of the multi- 
plier, which has been shown to be hard to define 
precisely. Could this be a source of the discrepancy 
sometimes noted [8] that measured stress-transfer ap- 
pears to be greater than predicted by these simple 
models? If Q~ is assumed to be 1, then more stress 
would have to be transferred over that distance than if 
Qm is allowed to be some larger figure. 

5. Conclusion 
A method is presented for calculating stresses and 
strains within a fibre in a fibre-composite material 
from an assumed surface distribution of shear stress 
by expressing solutions as a series of harmonic terms. 
End adhesion is ignored at this stage. The results show 
that care needs to taken when describing patterns of 
stress transfer and definitions of so-called critical 
lengths. The salient results of this analysis, common to 
all patterns of stress transfer considered, are that 
(i) axial fibre stress scales in direct proport ion to the 
magnitude of the applied shear stress, and (ii) when, 
by the nature of the stress transfer function, a plateau 
region occurs in the axial stress, its length is indepen- 
dent of the applied stress. In addition, for elastic ma- 
trices in which the shear-lag description of stress 
transfer is used the stress-transfer length is longer than 
given by the simple formula by a multiple that de- 
pends on the criterion chosen for defining opt imum 
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stress transfer. The analysis can be extended in future 
to include adhesion at the fibre ends and the effects of 
different Poisson's ratios in the fibre and matrix, 
which would lead to either radial compressive or ten- 
sile forces over the cylindrical fibre surface. Some 
consequences that could be examined are the change 
in planarity of the fibre ends and stress and strain 
gradients generated within the fibre that could lead to 

fai lure.  
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Appendix A 
The starting point of the derivation is the following set 

+ (X + 2IX)drr + Ix dz 2 

d2w 

+ (X + tX) drdz - 

d [!d(rv)~ d2v 
dr ] + d 7 2  - 0 

of equations 

dZu 
(X + 2IX) 

[ d 2 u  
(x + Ix)/w~-, \ oroz 

0 (A1) 

1 du'] (d2w 1 dw)  

+ r dz ] + g \  dr 2 + r ~-r 

d2w 
+ (X + 2ix) dz 2 - 0 

o., = (X + 2 g ) ~  + X-Ur + XdWdz 

o-r= = IX + 

 (du u) 
o.z= = \ d r  + + (X + 2g)~-z 

dv 
o . , =  = Ix~  

du dw u 
()~ + 2ix) = - + X  + k - -  

r dr dz 
o.4~r 

o 'r ,  = la 

(A2) 

(A3) 

(A4) 

Equation 1 is derived by differentiating Equation 
A1 with respect to r and Equation A3 with respect to 
z and then eliminating either du/dz or dw/dr between 
the results. 

Solutions to Equation 1 are found in a similar way 
to solutions to Laplace's equation. Care needs to be 
taken to find all the solutions, as Equation 1 is fourth- 
order whereas Laplace's equation is only second- 
order. Filon finds the possible sets of product func- 
tions satisfying Equation 1 to be 

y = A cos(kz + ~)Ii(kr ) 

B cos(kz + ~)Kl(kr) 

C cos(kz + 7)rlo(kr) 

D cos(kz + 5)rKo(kr) 

Ez cos(kz + e) It(kr) 

Fzcos(kz + O)Kl(kr) (A5) 

where k = (2n + 1)n/2c and I and K are hyperbolic 
(or modified) Bessel functions of the first and second 
kinds. 

The solutions for a circular cylinder under the sys- 
tem of stresses described above are composed of 
a series of terms of the form above but only containing 
the I functions. 

du  

dz 

dw 

dr 

~ [ A 1  cos(kz + %)Ii(kr) 

+ C1 cos(kz + y1)rlo(kr) 

+ Elzcos(kz + el)I i(kr)]  (A6) 

~,[A2 cos(kz + o~z)Ii(kr) 

+ C2 cos(kz + 72)rlo(kr) 

+ E2zcos(kz + e2)Ii(kr)J (A7) 

The K functions are not used in this case as they lead 
to infinite terms at the axis. Integrating and putting in 
boundary conditions leads to expressions for u and 
w which can be substituted back into Equations A1 
and A3. This leads ultimately to a set of equations for 
the displacements u and w and the stresses o.r,, c~== and 
o.r=. By considering the surface of the cylinder, r = a, 
and comparing the Fourier series expansions of the 
applied stresses with those calculated here, expres- 
sions can be found for the stresses and strains in the 
particular case of interest. These are given in the text 
without further derivation and are the ones imple- 
mented for this study. The full treatment is provided 
by Filon [11]. 

Appendix B 
Analysis of the shear-stress transfer equations can give 
some further insight into the behaviour of this system 
and provide a check on the answers given by the 
computer model. The axial force produced at the 
central plane of the fibre, z = 0, can be equated to the 
total shear stress transferred over the curved surface 

Using 

~ z 

na2(o.=)z - 2ha (o'r=),=~ dz (A8) 

(o.,=)r=a = "CO sinh(#'z/a)/cosh(~'q) (A9) 

from Equation (12), and noting that the maximum 
value of %z is at z = 0 then solving equation A8 

(o.=)==o = (2%/[3') [1 -- sech([Yq)] (A10) 

Now sech(x) --* 0 as x ~ oo so that for large q]3' 

(,%=)0 _ 2, _ 2 F E f  ln(2/a)]l/2 
13- (A11) "Co LGm 

Putting ln(R/a) = 2 as described previously and with 
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(Gm/Ef) = 4 x 10 -3, leads to (~==)o/Xo = 31 as shown 
in Fig. 7. 
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